Rapid induction of immune density-dependent prophylaxis in adult social insects.
نویسندگان
چکیده
The innate immune system provides defence against parasites and pathogens. This defence comes at a cost, suggesting that immune function should exhibit plasticity in response to variation in environmental threats. Density-dependent prophylaxis (DDP) has been demonstrated mostly in phase-polyphenic insects, where larval group size determines levels of immune function in either adults or later larval instars. Social insects exhibit extreme sociality, but DDP has been suggested to be absent from these ecologically dominant taxa. Here we show that adult bumble-bee workers (Bombus terrestris) exhibit rapid plasticity in their immune function in response to social context. These results suggest that DDP does not depend upon larval conditions, and is likely to be a widespread and labile response to rapidly changing conditions in adult insect populations. This has obvious ramifications for experimental analysis of immune function in insects, and serious implications for our understanding of the epidemiology and impact of pathogens and parasites in spatially structured adult insect populations.
منابع مشابه
Molecular Characterization of a Lysozyme Gene and Its Altered Expression Profile in Crowded Beet Webworm (Loxostege sticticalis)
There is growing evidence that insects living in high-density populations exhibit an increase in immune function to counter a higher risk of disease. This phenomenon, known as density-dependent prophylaxis, has been experimentally tested in a number of insect species. Although density-dependent prophylaxis is especially prevalent in insects exhibiting density-dependent phase polyphenism, the mo...
متن کاملDensity-dependent prophylaxis and condition-dependent immune function in Lepidopteran larvae: a multivariate approach
1. The risk of parasitism and infectious disease is expected to increase with population density as a consequence of positive density-dependent transmission rates. Therefore, species that encounter large fluctuations in population density are predicted to exhibit plasticity in their immune system, such that investment in costly immune defences is adjusted to match the probability of exposure to...
متن کاملDensity-dependent prophylactic immunity reconsidered in the light of host group living and social behavior.
According to the density-dependent hypothesis (DDP), hosts living at high densities suffer greater risk of disease and so invest more in immunity. Although there is much empirical support for this, especially from invertebrate systems, there are many exceptions, notably in social insects. We propose that (A) density is not always the most appropriate population parameter to use when considering...
متن کاملDoes immunity vary with population density in wild populations of Mormon crickets?
Background: Parasite transmission rate often increases with population density, and selection is expected to favour individuals that differentially allocate immune resources according to future population density (density-dependent prophylaxis). Laboratory studies uphold these predictions, but field studies sometimes contradict them. Question: Do wild populations of Mormon crickets show density...
متن کاملTrophallaxis and prophylaxis: social immunity in the carpenter ant Camponotus pennsylvanicus.
In social insects, group behaviour can increase disease resistance among nest-mates and generate social prophylaxis. Stomodeal trophallaxis, or mutual feeding through regurgitation, may boost colony-level immunocompetence. We provide evidence for increased trophallactic behaviour among immunized workers of the carpenter ant Camponotus pennsylvanicus, which, together with increased antimicrobial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biology letters
دوره 5 6 شماره
صفحات -
تاریخ انتشار 2009